All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Can BAŞKENT

ILLC, UvA

May 10, 2006
All Normal Extensions of S^5 are Finitely Axiomatizable

Road-Map and Recall
 Road-Map
 Recall

Mathematical Tools
 p-morphism
 How to proceed?

Proof
 Axiomatizability
 BQO-Theory comes in
 Results
 Related Results

Complexity Results
 Some Facts
All Normal Extensions of S_5^2 are Finitely Axiomatizable

Road-Map and Recall

Road-Map

Road-Map For the Proof

- Recap
 - Necessary mathematical machinery
 - Proof in several steps
 - Complexity results
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Road-Map and Recall

Road-Map

Road-Map For the Proof

- Recap
- Necessary mathematical machinery
 - Proof in several steps
 - Complexity results
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Road-Map and Recall
Road-Map

Road-Map For the Proof

- Recap
- Necessary mathematical machinery
- Proof in several steps
- Complexity results
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Road-Map and Recall

Road-Map

Road-Map For the Proof

- Recap
- Necessary mathematical machinery
- Proof in several steps
- Complexity results
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Road-Map and Recall

Recall

Axioms of $S5^2$

- All tautologies of propositional calculus
- $□_i(φ \to ψ) \to (□_iφ \to □_iψ)$
- $□_iφ \to φ$
- $□_iφ \to □_i□_iφ$
- $◊_i□_iφ \to φ$
- $□_1□_2φ \leftrightarrow □_2□_1φ$

Two modal operators: $□_1$ and $□_2$
Closed under MP and Necessitation (from φ infer $□_iφ$).
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Road-Map and Recall

Recall

Axioms of $S5^2$

- All tautologies of propositional calculus
- $\square_i(\varphi \rightarrow \psi) \rightarrow (\square_i\varphi \rightarrow \square_i\psi)$
- $\square_i\varphi \rightarrow \varphi$
- $\square_i\varphi \rightarrow \square_i\square_i\varphi$
- $\diamondsuit_i\square_i\varphi \rightarrow \varphi$
- $\square_1\square_2\varphi \leftrightarrow \square_2\square_1\varphi$

Two modal operators: \square_1 and \square_2
Closed under MP and Necessitation (from φ infer $\square_i\varphi$).
Axioms of $\textbf{S5}^2$

- All tautologies of propositional calculus
- $\square_i(\varphi \rightarrow \psi) \rightarrow (\square_i \varphi \rightarrow \square_i \psi)$
- $\square_i \varphi \rightarrow \varphi$
- $\square_i \varphi \rightarrow \square_i \square_i \varphi$
- $\Diamond_i \square_i \varphi \rightarrow \varphi$
- $\square_1 \square_2 \varphi \leftrightarrow \square_2 \square_1 \varphi$

Two modal operators: \square_1 and \square_2
Closed under MP and Necessitation (from φ infer $\square_i \varphi$).
Axioms of $S5^2$

- All tautologies of propositional calculus
- $\Box_i(\varphi \rightarrow \psi) \rightarrow (\Box_i\varphi \rightarrow \Box_i\psi)$
- $\Box_i\varphi \rightarrow \varphi$
- $\Box_i\varphi \rightarrow \Box_i\Box_i\varphi$
- $\Diamond_i\Box_i\varphi \rightarrow \varphi$
- $\Box_1\Box_2\varphi \leftrightarrow \Box_2\Box_1\varphi$

Two modal operators: \Box_1 and \Box_2
Closed under MP and Necessitation (from φ infer $\Box_i\varphi$).
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Road-Map and Recall

Recall

Axioms of $S5^2$

- All tautologies of propositional calculus
- $\Box_i(\varphi \to \psi) \to (\Box_i\varphi \to \Box_i\psi)$
- $\Box_i\varphi \to \varphi$
- $\Box_i\varphi \to \Box_i\Box_i\varphi$
- $\Diamond_i\Box_i\varphi \to \varphi$
- $\Box_1\Box_2\varphi \leftrightarrow \Box_2\Box_1\varphi$

Two modal operators: \Box_1 and \Box_2
Closed under MP and Necessitation (from φ infer $\Box_i\varphi$).
Axioms of $\textbf{S5}^2$

- All tautologies of propositional calculus
- $\square_i (\varphi \rightarrow \psi) \rightarrow (\square_i \varphi \rightarrow \square_i \psi)$
- $\square_i \varphi \rightarrow \varphi$
- $\square_i \varphi \rightarrow \square_i \square_i \varphi$
- $\Diamond_i \square_i \varphi \rightarrow \varphi$
- $\square_1 \square_2 \varphi \leftrightarrow \square_2 \square_1 \varphi$

Two modal operators: \square_1 and \square_2
Closed under MP and Necessitation (from φ infer $\square_i \varphi$).
All Normal Extensions of $\mathbf{S5}^2$ are Finitely Axiomatizable

Road-Map and Recall

Recall

Facts on $\mathbf{S5}^2$ (1)

Complete with respect to $\{n \times n : n \geq 1\}$, for natural number n [Segerberg].

where we have:

$(x_1, x_2) R_1 (y_1, y_2) \text{ iff } x_2 = y_2$

$(x_1, x_2) R_2 (y_1, y_2) \text{ iff } x_1 = y_1$
Facts on $\mathbf{S5}^2$ (2)

Every proper extension L of $\mathbf{S5}^2$ has poly-size model property; that is, there is a polynomial $P(n)$ such that any L-consistent formula φ has a model over a frame validating L with at most $P(|\varphi|)$ points, where $|\varphi|$ is the length of the formula φ.
Facts on $\text{S}5^2$ (3)

$\mathcal{F} = (W, R_1, R_2)$ is a $\text{S}5^2$ frame where:

- W is non-empty
- R_i's are equivalence relations on W such that

$$\mathcal{F} \models (\forall w, v, u)(wR_1 v \land vR_2 u) \rightarrow (\exists z)(wR_2 z \land zR_1 u)$$
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

p-morphism

For two $S5^2$ frames $\mathcal{F} = (W, R_1, R_2)$ and $\mathcal{G} = (U, S_1, S_2)$, p-morphism $f : U \to W$ from \mathcal{G} to \mathcal{F}, for each $i = 1, 2$ is defined as follows:

$$(\forall t \in U)(\forall w \in W)(f(t) R_i w \leftrightarrow (\exists u \in U)(t S_i u \land f(u) = w))$$
All Normal Extensions of $\textbf{S}5^2$ are Finitely Axiomatizable

Mathematical Tools

p-morphism

Definitions on p-morphism

$\textbf{S}5^2$ frames \mathcal{F} is rooted if and only if

$$\forall w, v \exists u (wR_1 u \land uR_2 v)$$

Then define $\textbf{F}_{\textbf{S}5^2}$ as the set of representatives of the isomorphism types of the finite rooted $\textbf{S}5^2$ frames. We will, from now on, consider the frames in $\textbf{F}_{\textbf{S}5^2}$. Why?
Definitions on \(\rho \)-morphism: an earlier result

Let \(L \) be a normal extension of \(S5^2 \). \(\mathcal{F} \in S5^2 \) is called \(L \)-frame if \(\mathcal{F} \) validates each formula in \(L \). Then, define \(F_L \) the set of all \(L \)-frames in \(F_{S5^2} \).

Bezhanisvili proved somewhere else that: \(L \) is complete wrt \(F_L \).

This is the reason why we will only consider the frames in \(F_{S5^2} \). This is the first step towards our aim.

Define \(M_L = \min(F_{S5^2} \setminus F_L) \).
Definitions on p-morphism: a relation

We will introduce our first partial order in $\mathbf{FS}_{\mathbf{S}^5^2}$: \leq. For \mathcal{F} and \mathcal{G} in $\mathbf{FS}_{\mathbf{S}^5^2}$,

$$\mathcal{F} \leq \mathcal{G} \text{ iff } \mathcal{F} \text{ is a } p\text{-morphc image of } \mathcal{G}.$$

For each \mathcal{G} in a subset A of $\mathbf{FS}_{\mathbf{S}^5^2}$, there is a frame $\mathcal{F} \in \text{min}(A)$ such that $\mathcal{F} \leq \mathcal{G}$.
All Normal Extensions of $\textbf{S}5^2$ are Finitely Axiomatizable

— Mathematical Tools
— How to proceed?

Road-Map for the Proof

We will proceed as follows:

- Find a set of formulas that axiomatize any proper normal extension of $\textbf{S}5^2$.
- Show that this set is finite by stating equivalent statement about the finiteness of the set of axioms.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

Axiomatizability

Jankov-Fine Formulas

\[
\alpha(\mathcal{F}) = \Box_1 \Box_2 \left(\bigvee_{p \in W} (p \wedge \neg \bigvee_{p' \in W \setminus \{p\}} p') \right)
\]

\[
\wedge \bigwedge_{i=1,2} (p \rightarrow \Diamond_i p')
\]

\[
\wedge \bigwedge_{i=1,2} (p \rightarrow \neg \Diamond_i p')
\]

\[
\chi(\mathcal{F}) = \neg \alpha(\mathcal{F})
\]
All Normal Extensions of $\mathbf{S5}^2$ are Finitely Axiomatizable

Proof

Axiomatizability

Why on earth do we need that formula?

$\mathcal{F} \leq \mathcal{G}$ if and only if $\mathcal{G} \not\models \chi(\mathcal{F})$.

$\mathcal{G} \in \mathbf{F}_L$ if and only if for no $\mathcal{F} \in \mathbf{M}_L$, $\mathcal{F} \leq \mathcal{G}$, where $\mathbf{M}_L = \min(\mathbf{F}_{\mathbf{S5}^2} \setminus \mathbf{F}_L)$.

Theorem Every proper normal extension L of $\mathbf{S5}^2$ is axiomatizable by the axioms of $\mathbf{S5}^2$ and $\{\chi(\mathcal{F}) : \mathcal{F} \in \mathbf{M}_L\}$.

Need to show \mathbf{M}_L is finite!
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

Axiomatizability

Why on earth do we need that formula?

- $\mathcal{F} \leq \mathcal{G}$ if and only if $\mathcal{G} \not\models \chi(\mathcal{F})$.
- $\mathcal{G} \in \mathcal{F}_L$ if and only if for no $\mathcal{F} \in \mathcal{M}_L$, $\mathcal{F} \leq \mathcal{G}$, where $\mathcal{M}_L = \text{min}(\mathcal{F}_{S5^2} \setminus \mathcal{F}_L)$.

- **Theorem** Every proper normal extension L of $S5^2$ is axiomatizable by the axioms of $S5^2$ and $\{\chi(\mathcal{F}) : \mathcal{F} \in \mathcal{M}_L\}$.

- Need to show \mathcal{M}_L is finite!
All Normal Extensions of $\textbf{S5}^2$ are Finitely Axiomatizable

Proof

Axiomatizability

Why on earth do we need that formula?

- $\mathcal{F} \leq \mathcal{G}$ if and only if $\mathcal{G} \not\models \chi(\mathcal{F})$.
- $\mathcal{G} \in \mathcal{F}_L$ if and only if for no $\mathcal{F} \in \mathcal{M}_L$, $\mathcal{F} \leq \mathcal{G}$, where $\mathcal{M}_L = \operatorname{min}(\mathcal{F}_{\textbf{S5}^2} \setminus \mathcal{F}_L)$.
- **Theorem** Every proper normal extension L of $\textbf{S5}^2$ is axiomatizable by the axioms of $\textbf{S5}^2$ and $\{\chi(\mathcal{F}) : \mathcal{F} \in \mathcal{M}_L\}$.
- Need to show \mathcal{M}_L is finite!
Why on earth do we need that formula?

- $\mathcal{F} \leq \mathcal{G}$ if and only if $\mathcal{G} \not\models \chi(\mathcal{F})$.
- $\mathcal{G} \in \mathcal{F}_L$ if and only if for no $\mathcal{F} \in \mathcal{M}_L$, $\mathcal{F} \leq \mathcal{G}$, where $\mathcal{M}_L = \min(\mathcal{F}_{S5^2} \setminus \mathcal{F}_L)$.
- **Theorem** Every proper normal extension L of $S5^2$ is axiomatizable by the axioms of $S5^2$ and $\{\chi(\mathcal{F}) : \mathcal{F} \in \mathcal{M}_L\}$.
- Need to show \mathcal{M}_L is finite!
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

BQO-Theory comes in

A qo-set (1)

R_i – **Depth** of \mathcal{F} is the number of R_i-equivalence classes of \mathcal{F}. Denote $d_i(\mathcal{F})$.

$n(L)$ is the least n such that, $n \times n \notin F_L$.

- If $\mathcal{F} \in F_L$, then $d_1(\mathcal{F}) < n(L)$ or $d_2(\mathcal{F}) < n(L)$.
- In contrast, if \mathcal{F} is not in F_L, i.e. $\mathcal{F} \in M_L$; then $d_1(\mathcal{F}) \leq n(L)$ or $d_2(\mathcal{F}) \leq n(L)$.
- The previous two results give rise to the following fact: M_L is finite iff $\{\mathcal{F} \in M_L : d_i(\mathcal{F}) = k\}$ is finite for each $k \leq n(L)$ where $i = 1, 2$.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

BQO-Theory comes in

A qo-set (1)

R_i – Depth of \mathcal{F} is the number of R_i-equivalence classes of \mathcal{F}. Denote $d_i(\mathcal{F})$.

$n(L)$ is the least n such that, $n \times n \notin \mathcal{F}_L$.

▶ If $\mathcal{F} \in \mathcal{F}_L$, then $d_1(\mathcal{F}) < n(L)$ or $d_2(\mathcal{F}) < n(L)$.

▶ In contrast, if \mathcal{F} is not in \mathcal{F}_L, i.e. $\mathcal{F} \in \mathcal{M}_L$; then $d_1(\mathcal{F}) \leq n(L)$ or $d_2(\mathcal{F}) \leq n(L)$.

▶ The previous two results give rise to the following fact: \mathcal{M}_L is finite iff $\{\mathcal{F} \in \mathcal{M}_L : d_i(\mathcal{F}) = k\}$ is finite for each $k \leq n(L)$ where $i = 1, 2$.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

BQO-Theory comes in

A qo-set (1)

R_i – Depth of \mathcal{F} is the number of R_i-equivalence classes of \mathcal{F}. Denote $d_i(\mathcal{F})$.

$n(L)$ is the least n such that, $n \times n \notin F_L$.

- If $\mathcal{F} \in F_L$, then $d_1(\mathcal{F}) < n(L)$ or $d_2(\mathcal{F}) < n(L)$.
- In contrast, if \mathcal{F} is not in F_L, i.e. $\mathcal{F} \in M_L$; then $d_1(\mathcal{F}) \leq n(L)$ or $d_2(\mathcal{F}) \leq n(L)$.
- The previous two results give rise to the following fact: M_L is finite iff $\{ \mathcal{F} \in M_L : d_i(\mathcal{F}) = k \}$ is finite for each $k \leq n(L)$ where $i = 1, 2$.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

\[\text{Proof} \]

\[\text{BQO-Theory comes in} \]

\section*{A qo-set (2)}

So to prove the finiteness of M_L, prove the finiteness of
\(\{ F \in M_L : d_i(F) = k \} \) for each k while $i = 1, 2$.

But, since M_L is a \leq-antichain in F_{S5^2}, \textit{instead} show M_L does \textit{not} contain an infinite \leq-antichain.
A qo-set (3): A Newer Relation

Fix k. WLOG, let $i = 2$. Let \mathcal{M}_n be the set of $n \times k$ matrices (m_{ij}) and \mathcal{M} is the collection $\bigcup_{n \in \omega} \mathcal{M}_n$.

$(m_{ij}) \preceq (m'_{ij})$ holds if $(m_{ij}) \in \mathcal{M}_n$ and $(m'_{ij}) \in \mathcal{M}_{n'}$ and $n \leq n'$ and there is a surjection $f : n' \to n$ such that $m_{f(i)j} \leq m'_{ij}$.

Observe that (\mathcal{M}, \preceq) is a qo-set.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

BQO-Theory comes in

A qo-set (4)

Define $H : F^k_{S5^2} \to \mathcal{M}$ by $H(\mathcal{F}) = (m_{ij})$, if $|F_i \cap F^j| = m_{ij}$. H is an order-reflecting injection, where $F^k_{S5^2}$ is the set of frames in F_{S5^2} with R_2-depth k, F_i is the i^{th} equivalence class of R_1 and F^j is the j^{th} equivalence class of R_2.

Therefore, for each \leq-antichain Δ in $F^k_{S5^2}$, then $H(\Delta)$ is a \leq-antichain.

So, instead, we will show there is no infinite \leq-antichains in \mathcal{M}. But, instead of dealing with \leq, we will define new a quasi-order: \sqsubset.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

BQO-Theory comes in

A qo-set (5): The Newest Relation

For $(m_{ij}) \in M_n$ and $(m'_{ij}) \in M_{n'}$:

$(m_{ij}) \sqsubseteq_1 (m'_{ij})$ if there is an injective order-preserving map $\varphi : n \to n'$ such that $m_{ij} \leq m'_{\varphi(i)j}$ for each $i < n$ and $j < k$.

$(m_{ij}) \sqsubseteq_2 (m'_{ij})$ if there is a map $\psi : n' \to n$ such that $m_{\psi(i)j} \leq m'_{ij}$ for each $i < n$ and $j < k$.

\sqsubseteq is the intersection of \sqsubseteq_1 and \sqsubseteq_2.

Thus, if $(m_{ij}) \sqsubseteq (m'_{ij})$, then $(m_{ij}) \preceq (m'_{ij})$.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

BQO-Theory comes in

BQOs: finally

Therefore, *instead*, we will show there is no infinite \sqsubseteq-antichains in \mathcal{M}.

FACT: There is no infinite antichains in a BQO.
BQOs: recap

- (ω, \leq) is a BQO.
- Any suborder of a BQO, and the intersection of two BQOs are BQOs.
- If (Q, \leq) is a BQO, then, $(\wp(Q), \leq)$ is a BQO.
- If (Q, \leq) is a BQO, then $(\bigcup_{\alpha \in On} Q^\alpha, \leq^*)$ is a BQO. Hence, the suborders (Q^k, \leq^*) and $\bigcup_{n<\omega} Q^n, \leq^*$ are BQOs.

Define \leq^* on the class $\bigcup_{\alpha \in On} Q^\alpha$ by $(x_i)_{i<\alpha} \leq^* (y_i)_{i<\beta}$ if there is an order-preserving map $\varphi: \alpha \to \beta$ such that $x_i \leq y_{\varphi(i)}$ for each $i < \alpha$.
Result-1

- $(\mathcal{M}, \sqsubseteq_1)$ is a BQO.

- $(\mathcal{M}, \sqsubseteq_2)$ is a BQO.

- Thus, $(\mathcal{M}, \sqsubseteq)$ is a BQO.
All Normal Extensions of S^5_2 are Finitely Axiomatizable

Result-1

$(\mathcal{M}, \sqsubseteq_1)$ is a BQO.

$(\mathcal{M}, \sqsubseteq_2)$ is a BQO.

Thus, $(\mathcal{M}, \sqsubseteq)$ is a BQO.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Proof

Result-1

► $(\mathcal{M}, \sqsubseteq_1)$ is a BQO.

► $(\mathcal{M}, \sqsubseteq_2)$ is a BQO.

► Thus, $(\mathcal{M}, \sqsubseteq)$ is a BQO.
All Normal Extensions of $\mathbf{S5}^2$ are Finitely Axiomatizable

Proof

Results

Result (theorem)

THEOREM: All normal extensions of $\mathbf{S5}^2$ are finitely axiomatizable.
All Normal Extensions of $\mathbf{S5}^2$ are Finitely Axiomatizable

Proof

Results

Result (proof)

$\mathbf{S5}^2$ is finitely axiomatizable.

If L is a proper extension of $\mathbf{S5}^2$, then it is axiomatizable by the axioms of $\mathbf{S5}^2$ and \{\(\chi(\mathcal{F}) : \mathcal{F} \in \mathcal{M}_L\}\}.

Since \sqsubseteq is a BQO, it has no \sqsubseteq-infinite antichains, and there is no \preceq-antichains in \mathcal{M}.

Therefore for each $k \in \omega$, $\mathbf{F}_{\mathbf{S5}^2}^k$ has no infinite antichains. Thus, for each $k \leq n(L)$, the set \{\(\mathcal{F} \in \mathcal{M}_L : d_i(\mathcal{F}) = k\)\} has finite number of elements.

Hence, \mathcal{M}_L is finite, and there are only finitely many $\chi(\mathcal{F})$ formulas that axiomatize L.
All Normal Extensions of $\mathbf{S5}^2$ are Finitely Axiomatizable

\[\text{Proof}\]

\[\text{Results}\]

Result (proof)

- $\mathbf{S5}^2$ is finitely axiomatizable.
- If L is a proper extension of $\mathbf{S5}^2$, then it is axiomatizable by the axioms of $\mathbf{S5}^2$ and $\{\chi(\mathcal{F}) : \mathcal{F} \in M_L\}$.
- Since \sqsubseteq is a BQO, it has no \sqsubseteq-infinite antichains, and there is no \preceq-antichains in \mathcal{M}.
- Therefore for each $k \in \omega$, $\mathbf{F}_k^{\mathbf{S5}^2}$ has no infinite antichains. Thus, for each $k \leq n(L)$, the set $\{\mathcal{F} \in M_L : d_i(\mathcal{F}) = k\}$ has finite number of elements.
- Hence, M_L is finite, and there are only finitely many $\chi(\mathcal{F})$ formulas that axiomatize L.
S5^2 is finitely axiomatizable.

If L is a proper extension of S5^2, then it is axiomatizable by the axioms of S5^2 and \(\{ \chi(F) : F \in M_L \} \).

Since \(\sqsubseteq \) is a BQO, it has no \(\sqsubseteq \)-infinite antichains, and there is no \(\preceq \)-antichains in \(M \).

Therefore for each \(k \in \omega, F_{S5^2}^k \) has no infinite antichains. Thus, for each \(k \leq n(L) \), the set \(\{ F \in M_L : d_i(F) = k \} \) has finite number of elements.

Hence, \(M_L \) is finite, and there are only finitely many \(\chi(F) \) formulas that axiomatize \(L \).
Result (proof)

- **S5^2** is finitely axiomatizable.
- If L is a *proper* extension of $S5^2$, then it is axiomatizable by the axioms of $S5^2$ and $\{\chi(\mathcal{F}) : \mathcal{F} \in M_L\}$.
- Since \sqsubseteq is a BQO, it has no \sqsubseteq-infinite antichains, and there is no \preceq-antichains in M.
- Therefore for each $k \in \omega$, $F^k_{S5^2}$ has no infinite antichains. Thus, for each $k \leq n(L)$, the set $\{\mathcal{F} \in M_L : d_i(\mathcal{F}) = k\}$ has finite number of elements.
- Hence, M_L is finite, and there are only finitely many $\chi(\mathcal{F})$ formulas that axiomatize L.

All Normal Extensions of $S5^2$ are Finitely Axiomatizable
Result (proof)

- \mathbf{S}^2 is finitely axiomatizable.
- If L is a proper extension of \mathbf{S}^2, then it is axiomatizable by the axioms of \mathbf{S}^2 and $\{\chi(\mathcal{F}) : \mathcal{F} \in \mathcal{M}_L\}$.
- Since \sqsubseteq is a BQO, it has no \sqsubseteq-infinite antichains, and there is no \preceq-antichains in \mathcal{M}.
- Therefore for each $k \in \omega$, $F^k_{\mathbf{S}^2}$ has no infinite antichains. Thus, for each $k \leq n(L)$, the set $\{\mathcal{F} \in \mathcal{M}_L : d_i(\mathcal{F}) = k\}$ has finite number of elements.
- Hence, \mathcal{M}_L is finite, and there are only finitely many $\chi(\mathcal{F})$ formulas that axiomatize L.
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

- Complexity Results
- Some Facts

SAT

- $S5^2$ has a exponential size model property, and its satisfiability problem is NEXP-TIME.
- Every proper normal extension of $S5^2$ is decidable in polynomial time. Therefore, together with the poly-size model property, it implies that the satisfiability for the normal proper extension is NP-complete.

Poly-size model property For the each proper normal extension L of $S5^2$, there is a polynomial $P(n)$ s.t. for any L-consistent formula ϕ has a model over a frame validating L, and model has at most $P(|\phi|)$ points where $P(|\phi|)$denotes the length of ϕ.
SAT

- \(S5^2 \) has a exponential size model property, and its satisfiability problem is NEXP-TIME.
- Every proper normal extension of \(S5^2 \) is decidable in polynomial time. Therefore, together with the poly-size model property, it implies that the satisfiability for the normal proper extension is NP-complete.

Poly-size Model Property For the each proper normal extension \(L \) of \(S5^2 \), there is a polynomial \(P(n) \) s.t. for any \(L \)-consistent formula \(\phi \) has a model over a frame validating \(L \), and model has at most \(P(|\phi|) \) points where \(P(|\phi|) \)denotes the length of \(\phi \).
All Normal Extensions of $S5^2$ are Finitely Axiomatizable

Thanks for your attention